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Abstract. A class of Robinson-Trautman space-times is investigated with respect to the 
existence and properties of cosmic time functions and corresponding surfaces of simul- 
taneity, partial Cauchy surfaces (PCS). The existence of an horizon-like hypersurface N 
generated by null curves is established. Then it is proved that in any connected PCS, 
intersecting N and approaching the curvature singularity in a certain way, the singularity 
appears as a point. Some counterexamples are given when these conditions do not hold, and 
the relation to the problem of representing particles by means of singularities is briefly 
discussed. 

1. Introduction 

In general relativity physical space-time, i.e. the collection of all events, is represented 
by a four-dimensional C“ manifold A with Lorentz metric 9 (Hawking and Ellis 1974, 
ch 3). The description of a physical course of events then amounts to describing the 
appearance of a one-parameter family of surfaces of simultaneity (Misner et a l l973 ,  ch 
27). Therefore, the dynamical object of general relativity is three-dimensional space 
(Wheeler et a1 1962, Wheeler 1968). 

To make these ideas more precise, one introduces the concept of a cosmic time 
function (CTF), defined as a function t on A, whose gradient is everywhere time-like 
(Hawking and Ellis 1974, ch 6). Thus, t is increasing along every future directed 
time-like or null curve. The level surfaces { t  = constant} are partial Cauchy surfaces 
(PCS), i.e. space-like hypersurfaces with no edge which no time-like or null curve 
intersects more than once (Hawking 1968). Any CTF can be taken as a generalisation of 
the globally defined time of non-relativistic and special-relativistic theories, and the 
corresponding PCS’S then make precise the concept of surfaces of simultaneity in 
space-time. 

Not every space-time manifold admits a CTF; the necessary and sufficient condition 
for the existence of a CTF has been found to be stable causality (Hawking 1968, 
Hawking and Ellis 1974). Given this condition the surfaces {t=constant} are, of 
course, not unique, and in general the corresponding descriptions of the evolution of a 
physical system are widely different (Misner eta1 1973, ch 31), although certain choices 
of t may appear more natural or can be more convenient to use. 

In the present paper we investigate CTF’S in certain Robinson-Trautman (RT) 
space-times, which have been used in connection with the problem of motion of 
particles represented by space-time singularities. These space-times are described and 
some useful properties are found in 0 2. In § 3 we give examples of CTF’S whose 
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properties seem natural in connection with the description of particles. These belong to 
a class of CTF'S such that the curvature singularity appears as a point in the correspond- 
ing PCS'S, sufficient conditions for which are given in § 4. Finally, the relation of our 
results to the problem of representing matter by space-time singularities is discussed 
briefly in § 5 .  

2. RT space-times 

The h e  element of the RT space--times can be given in the form (Newman and Posadas 
1969, Carmeli 1977, ch 11) 

ds2 = 2  K--r--  d u 2 + 2  dr  du -ir2F-2 d l  d r  i 27 
where 

K = 4P2aza,(ln P). 
Further, 

which is equivalent with the vacuum field equations, Rob = O f ,  for any metric of the form 
(2*1), (2.2), assuming that P is independent of r and that M is a function of U only. The 
fourth coordinate x4 = U is a null coordinate (g44 = 0) taking all real values, r > 0, and 
takes all complex values. Instead of 6 we will also use polar coordinates defined 
from 5' = ei' cot &J, 0 < 6' -s T? 0 s 4 < 27~, and the coordinates are then numbered 
(x") = (x , x x , x ) = (r, 8, 4, U). The case when the submanifolds Y(r, U )  = 
{r, U =constants} are diffeomorphic to the unit sphere S 2  is selected by including points 
with B = 0. 

These metrics are functionally form invariant (d'Inverno and Smallwood 1978) 
under the coordinate transformations (Carmeli 1977, ch 11) 

1 2 3 4  

where a dot d i,iotes differentiation with respect to U, andfis analytic. with the following 
transformations of the functions appearing in the metric: 

K' = Kie2  P' = Fi- ' /dsfl .  (2.5) MI ;-;h,fj--3 

The relation (2.2), as well as the field equation (2.3), then also holds for the transformed 
quantities. This works locally with arbitrary s, f but if a transformation (2.4), (2.5) is 
required in the whole space-time, with the primed coordinates taking the same values 
as the unprirned ones, certain restrictions are necessary, e.g. f must be of the form 
f(i) = (al+ b ) / ( c l +  d ) ,  ad - bc # 0 (Cartan 1963). 

Every RT space-time admits a globally defined tetrad 8, PL, m, A, where 8 and PL are 
real null vectors$. We will be particularly interested in PZ, whose contravariant 

t ltalic indices take the values I ,  2, 3, 4 and Greek indices 1, 2, 3.  
t In  fact, most derivations of :he RT metrics start from such a tetrad, e.g. that of Carmeli (1977) 
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components can be taken as 

n a  = Sa4-4g44SUl  (2.6) 
in any coordinate system defined by (2.4). 

seen from 
Finally, the RT space-times have a curvature singularity at r = 0, unless M = 0, as is 

(2.7) 
This expression can be found by direct calculation or, more easily, by making use of the 
connection with the tetrad components 

R abcd R~~~~ = 4 8 ~ ~ r - ~ ,  

of the Weyl tensor. In empty space 

24(9z2 + 1 2 1 ~ ~ )  + 8(Yo'P4 f @0@4) - 32(*1q3 + Q 1 q f 3 )  (2.8) R R Q b c d  = 
abcd 

(cf Campbell and Wainwright 1977) and €or RT space-times qo = VI = 0,  T2 = -Mr-3 
(Carmeli 1977, ch 11). 

Those RT space-times which we are considering, i.e. with the Y(r, U )  diffeomorphic 
to the unit sphere S2, are, so to speak, deformations of Finkelstein's outgoing space- 
time, and have been of some interest in connection with the problem of motion and 
structure of particles (Newman and Posadas 1969, MAnsson 1978). Equivalently, these 
space-times can be selected by requiring the so-called fundamental two-dimensional 
surfaces F 2 S  = Y(1, U )  to be diffeomorphic to S2. 

It can be shown (Minsson 1978) that 

P = PoH (2.9) 

p , - 2 ( ~ t . l f ) = t s i n - 2 i e  -1 (2.10) 

where 

and H can be expanded in spherical harmonics. To prevent singularities in F 2 S  it is 
necessary that H # 0, and we can choose H > 0. From (2.2), (2.9) and (2.101, 

K = H'(I+ aoi3,*(ln H ) )  (2.11) 

where aoi3: = 4Po2asa~ is minus the square of the angular momentum operator. Since 
H > 0 and F 2 S  is compact it is clear that K, half the Gaussian curvature of F2S, as well 
as H, can be expanded in spherical harmonics. 

In order not to deviate too much from the spherically symmetric case we further 
assume 

(i) as U + +a, F 2 S  has the limiting configuration of a sphere, i.e. K +constant; 
(ii) for all (e, 4) and large negative U ,  a < H, K < p, where a, p are some positive 

(iii) M is a positive constant. 
numbers; 

For this subclass of RT space-times we will now establish a theorem concerning the 
vector field e, to be used in our study of PCS'S and C T F ~  

Remark. In a linear approximation (Newman and Posadas 1969) F 2 S  approaches a 
sphere exponentially as U + +a. Further, when hi = 0, the field equation (2.3) gives 

d 
3M 

(2.12) 

Here aoi3,*K can be expanded in spherical harmonics with 1 # 0 S O  that the integral on 
the right vanishes and F 2 S  has constant area. 
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Theorem 1. Let A? be an R T  space-time with F 2 S  diffeomorphic to S 2  and fulfilling 
conditions (i)-(iii). Then, as U + +CO, each integral curve of IZ which is incomplete at the 
curvature singularity goes asymptotically towards a unique integral curve of IE, defined 
for all U and with bounded r coordinate. These asymptotes generate a non-space-like 
hypersurface with topology S 2  x R. 

Proof. The main idea is to perform a coordinate transformation r + r '  such that 
nIa = Sa4 on a hypersurface with constant r'. 

First, let 

KO= lim K Ho= lim H (2.13) 
u - t i m  U'fCO 

for any (e ,  4) .  By condition (i) KO and, with a suitable f coordinate (2.4), Ho are 
constants and then (2.1 1) gives 

KO = Ho2. (2.14) 

The radial coordinate is transformed according tot 
r' = rH-'$-' (2.15) 

where $ is a function of ( U ,  8, 4 )  satisfying 

9 = b+-'-a (2.16) 

(2.17) 

such that $ > 0 is defined and bounded for all U ,  and + + t H i 3  as U + +CO$. This 
transformation, applied to (2.6), gives 

nIa = ~ ~ 4 + n " ~ ~ l  (2.18) 

where 

Thus, 

n"(r' = 2M) = Sa4,  (2.20) 

which implies that the curves {r' = 2M, 6 = 60, 4 = I&}, with any constants (do, &), are 
integral curves of the vector field IE defined for all U .  From the properties of F 2 S  it is 
clear that these curves generate a three-dimensional manifold X with topology S 2  x R. 
In the original coordinates X is given by r = rN(u, 0 , 4 )  where 

rN + MI& as U + +CO (2.21) 

and rN is bounded when U + --CO, so that there exist numbers r+, r- such that 0 < r- < 
rN < r+ everywhere on X. 

li We try to factorise n" with one factor containing no term proportional to r' .  A somewhat similar idea was 
used by Newman and Unti (1962) and by Foster and Newman (1967). 
i: The existence and uniqueness of such a function has been proved, in the main, by L Girding (1978, private 
communication). In particular, uniqueness is guaranteed by condition (ii). 
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Let y be an integral curve of X starting at r = 0, U = UO, (13~4)  = (eo, 40). Since by 
(2.18) nr4 = 1,  nr2 = nr3 = 0 ,  U increases strictly along y, and y is for all U > uo given by 
r f  = r’,,(u), where 0 < rf , (u)  < 2M. Now, suppose r f y ( u )  < 2 M  - E with some E > 0. 
Then, by (2.19), n f*  > eHO4M-’ for sufficiently large U, which gives a contradiction. 
Therefore r’,,(u) + 2M as U + +CO, i.e. y approaches the corresponding generator 
asymptotically. 

To prove the uniqueness we observe that around every point of A, PZ can locally be 
transformed to the form (2.18), (2.19) by means of a transformation (2.15)-(2.17). The 
uniqueness of bounded and everywhere defined solutions of (2.16) means, however, that 
any integral curve of PZ other than those generating X must either reach r = 0 or go to 
infinity, r + +CO, as U + --CO. 

Finally, X is given by 

r = 2MH$ (2.22) 

in the original coordinates. Since M is constant we find 

gab(r -2MH1,h),~(r -2MHf,b),b/X = -2$-2{[a,(H~)]2+sin-2 6[d,(H$)12}, 

which means that X is non-space-like. 

(2.23) 

0 

Remarks. In the special case of spherical symmetry X is the (time-reversed) event 
horizon, and in the general case N acts as a horizon with respect to radially directed 
causal curves. Being time-like at most points, it resembles the stationary limit surface of 
the Kerr solution (Hawking and Ellis 1974, p 165). Also note that the bounded r 
coordinate means that X is limited in the physical sense that the intersections K n  
{U = constant} have bounded area. 

3. A class of cosmic time functions 

Let A be a space-time as specified in 5 2. If t is a CTF in A then each point of K lies in 
some of the PCS’S { t  = constant}, and each PCS is intersected in at most one point by each 
generator of X. Our aim, to be reached in the next section, is to formulate sufficient 
conditions for PCS’S in which the curvature singularity appears as a point. It will then be 
essential that each PCS does intersect X. 

As a preliminary, we demonstrate in this section an example of CTF’S, whose level 
surfaces have the mentioned properties, namely 

t = U -Ke-l (3.1) 

where K is a positive constant. This function is globally defined and 

(3.2) 

which is positive for sufficiently small K, whence t has everywhere a time-like gradient. 
In the PCS’S Ro = {t = to} the curvature singularity appears as a point in the following 

sense. Ro may be divided into two disconnected components, one of which is generated 
by curves incomplete at r = 0, by an arbitrarily small topological two-sphere. Thus, t 
belongs to the class of CTF’S with respect to which the curvature singularity may 
represent a mass point. 
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Further, the Yto are connected and they intersect .#: These two properties are, 
however, not sufficient to guarantee the ‘point property’ of the Xo. We will therefore 
formulate three sufficient conditions on PCS’S, no two of which are alone sufficient. 

4. Properties of RT curvature singularities 

In this section we select three conditions on PCS’S in the RT space-times considered 
above. Then we show, in theorem 2, that in any such PCS the curvature singularity 
appears as a point. The corresponding choice of CTF is then a natural one in connection 
with particles represented by space-time singularities. 

The conditions on any PCS X will be as follows. 
(iv) X is connected; 
(v) X n N # j z i ;  
(vi) there exist finitely many numbers uo such that lim u = uo as r + 0 along some 

curve in 2, and arbitrarily near each uo there are numbers U such that % n N ( u )  is a 
topological two-sphere, where N ( u )  denotes the set of all integral curves of w starting at 
( r  = 0, U). 

These conditions, although not necessary for theorem 2, are independent since the 
theorem does not follow from (iv) + (v), (iv) + (vi) or (v) + (vi). Condition (vi) is a precise 
statement of the idea that the singularity appears at a number of places in Yt. However, 
we need not assume more since (iv) and (v) act as ‘boundary conditions’ forcing 2 to 
reach the singularity at just one u-value. The a priori reasons for the three conditions, 
i.e. besides the contents of the following theorem, will be discussed in $ 5 .  

Theorem 2. Let A be an R T  space-timc as specified in theorem 1, and let %be a PCS in 
A satisfying conditions (iv)-(vi). Then 2’ is divided into two parts, one of which is 
incomplete at r =1 0, by an arbitrarily small topological two-sphere. 

Proof. The proof is divided into three parts. 
(I) First we show that there is only one uo as in condition (vi). From theorem 1 and 

(v), YtnsS(u)  f i;L7 for all sufficiently large negative U. Thus, by (iv), if X f l h ’ ( 6 )  = 0 
then X f l  N ( u )  = 0 for all u 5 U^, since each K ( u )  divides A into two parts. Further, if 
lim U = u o  as r+O along some curve in X then, from (vi), YtflNX(uo)= 0 since 
otherwise (by a small variation) some integral curve of w would intersect X in two 
points. 

Let io be the smallest ug of (vi). Then X f l  N(Go) = 0 and thus X O N ( u )  = 0 for all 
U 5 io, and we conclude that only one uo exists. 

(11) Secondly, consider a topological two-sphere Y(u) = X f l N ( u )  f 0 with u in 
some arbitrarily small interval 0 < uo - U < E .  Since X is a connected (iv) PCS and N ( u )  
divides A into two parts, T ( u )  divides 2 into two parts, precisely one of which is 
incomplete at r = 0 since only one uo of (vi) exists. 

(111) Finally, we prove that with suitable U the upper limit of distances on Y(u) can 
be made arbitrarily small. Being a PCS, Yt is globally given by r = f ( u ,  O,C$). Then a 
time-like coordinate can be introduced by 

x l 4  = r -f (4.1) 
with x f 4  = 0 on 8. In a surrounding of X a space-like coordinate 1” can be defined, 
which is constant on each Y ( u ) ,  and r’-+ 0 as U -j uo. Corresponding to ( r ’ ,  O,C$, x ’ ~ )  
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there is a reference system in which we calculate distances for xr4 = 0, i.e. in 2. If gkb 
denote the components of the metric tensor in these coordinates then the line element 
in %’ is given by a three-tensor 4’ with components 

ar’ 
- 7 + O  as u -+ uo ax (4.3) 

(A = 2,3).  Therefore, near the singularity, the g’lA are insignificant compared with 
grAB = gAB. Further, Y(u) can be given by r = fT( f? ,  4 )  where f r  is a continuous 
function on S 2  and sup fr -+ 0 as U + u0. Since r’ is constant on F ( u ) ,  the line element on 
Y(u) is essentially given by 

(4.4) 2 do- = -gAB dXA dXB = 4 fT2H-’ do2. 

Since H P 2  is bounded, it is clear that the shortest distance between any points on Y(u) 
goes to zero as u + uo. U 

5. Conclusion 

For a certain class of RT  space-times we have given examples of PCS’S in which the 
curvature singularity appears as a point, and we have found sufficient conditions 
(iv)-(vi) for a PCS to have this property. On the other hand, there also exist PCS’S not 
possessing the one-pqint property, for instance the following ones in the Finkelstein 
case (K  = t ,  H = I/&, M = constant > 0). 

1. In the PCS’S { r  = ro< 2M) the singularity does not appear at all, i.e. these PCS’S 
contain no incomplete curves. 

2. I n h e  PCS’S { r  + ( r  + u)’/M = ro < 2M) the singularity appears as two points, at 
U = *JroM. 

3. Let Fb(r, U )  = r - M  - M 2 ( u  + r - to)-‘. For any to, {Ft,,(r, U )  = 0 )  consists of two 
PCS’S separated by r = M, in one of which the singularity appears as a point and in the 
other does not appear at all. Together with { r  = M }  these PCS’S cover dit. A cor- 
responding CTF is defined by 

where F+ and F- are suitable strictly increasing functions from R onto R ,  and R-,  
respectively. Thus, the singularity appears as a point for t < 0, vanishes at t = 0, and 
then remains absent. 

Examples, such as the above, show that singularities may represent particles only 
with respect to certain CTF’S. It is also clear ;hat the situation is caused by the horizon 
rather than the singularity as such. Therefore, qualitatively the same thing will happen 
even if particles are not identified with mass points provided only that they are small 
enough to lie inside 9 horizon. In the case of elementary particles this may not be so, but 
this kind of situation may occur in gravitational collapse, as soon as a black hole has 
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formed, even if the matter does not contract to infinite density. Also, if singularities or 
very dense states of matter are always surrounded by an event horizon (the ‘cosmic 
censorship’ hypothesis), then essentially the same thing happens with other singular 
space-times than the RT ones. Only if horizons could be excluded from space-time as 
unphysical would the situation change (Einstein 1939, Rosen 1970, Moller 1978). 
However, due to the global investigations of space-time manifolds satisfying the 
Einstein field equations, this does not seem feasible and, in any case, it is not the 
majority’s view (Hawking and Ellis 1974 and references therein). Thus, at least within 
general relativity, some selection of CTF’S or PCS’S is necessary. 

We can now also see some a priori reasons for the choice of conditions (iv)-(vi). The 
conditions should be selected so as to avoid the kind of PCS’S made possible by the 
existence of an event horizon. Demanding a non-empty intersection with a horizon 
excludes the kind of PCS’S in example 2. The same thing happens with our hypersurface 
N, being generated by null curves (v). Also examples 1 and 3, which are excluded by 
(vi), are made possible by the null cone structure, typical of the surrounding of a 
horizon. The possibility of violating condition (iv) does not, however, depend on the 
horizon but rather on the incompleteness of space-time at a singularity. 
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